adpho⁵

CO₂ Tax – How it Effects Gravure Printing

NIR is a trademark of adphos. adphos owns more than 200 patents- or patent applications on the NIR-technology

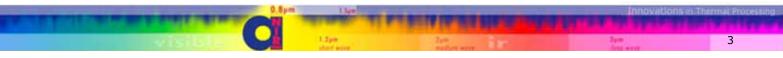
ERA Annual Conference, October 5th - 6th, 2020, Hamburg/Germany

Introduction

adpho⁵

CO₂-emissions show highest effect for earth warming!

Source: google/pictures



adpho5

Thermal processing becomes a (the mostly) driving process in printing!

Source: google/pictures

Gas Fired Ovens/Driers

- $C + O_2 \rightarrow CO_2 \uparrow + thermal energ <$
- 1 kg gas ≜ 8 10 kWh thermal energy

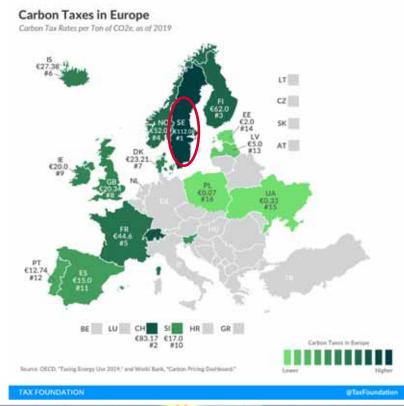
1 kWh thermal energy by natural gas generates

- 0.40 kg CO₂ with standard burners
- 0.25 kg CO₂ with highest efficient burners (including thermal heat recovery)

Remark: Germany emits ≈ 800 Mio. t/a CO_2

CO₂-Taxes (Present and Future) (1)

Germany:


- January 1st, 2021 (?)
 25 €/t CO₂ (≈ 28 US \$/t CO₂)
- 2025: up to 55 €/t CO₂
- ≥ 2026: 55 € 65 €/t CO₂

Source: VDI Nachrichten August 23rd, 2019 - No. 34

CO₂-Taxes (Present and Future) (2)

adpho⁵

Source: google/pictures

CO₂-Taxes (Present and Future) (3)

adpho⁵

Present short term ≥ 2030

Todays waste treatment costs are estimated to 180 €/t CO₂! (Reference "Bundesumweltamt")

Question is not if, but only where, how much and when!

Alternative Thermal Processing (1)

- Alternative burning fuels
 - \triangleright Ammonia (NH₃) \Rightarrow
 - ➤ Hydrogen (H₂)
- Radiation curing systems
 - UV-curing
 - Electro-beam-curing

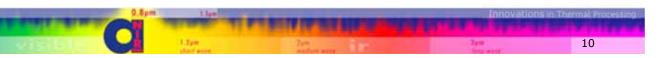
high No_x generation

- lack of capacity
- high price 3.5 5 €/kg
- safety aspects
- require special new inks/coating recipes
- limited to thin film printing/coating

Alternative Thermal Processing (2)

- Electro-thermal processing
 - ➤ Electrical heated hot air ⇒
 (resistant, induction heated)
 - Infrared based driers
 - Advanced NIR driers

- low efficiency, high energy costs
- only applicable to nontemperature sensitive substrates and thin film printing/coating
- extreme compact
- extreme energy efficient
- applicable also for
 - temperature sensitive films
 - solvent based inks/coatings
- extreme improved productivity and enhanced quality


Typical Today`s Energy Consumption for Decoration Printing Presses (1)

adpho⁵

These data are referred from a study

"Energie- und ressourceneffizientes digitales Druckverfahren in der Dekorindustrie" (2017)

As well based on printer provided data analyzing its presses (8).

Typical Today's Energy Consumption for Decoration Printing Presses (2)

adpho⁵

Gas consumption:

24.9 kWh up to 62.9 kWh based on 10 presses

Average electrical consumption: 4.6 kWh up to 15.5 kWh

Resulting CO₂-emissions per 1,000 m²

6.2 kg up to 25 kg

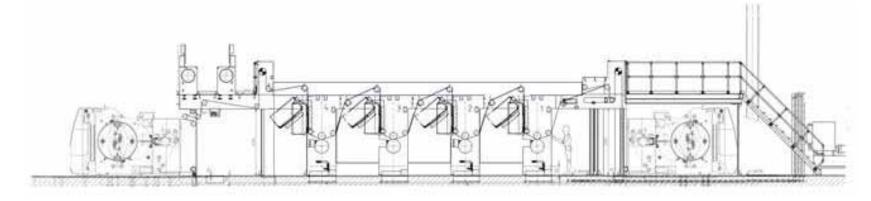
280 g/km 22 km – 89 km

150 g/km 41 – 167 km

"average car"

Source: google/pictures

Application Example



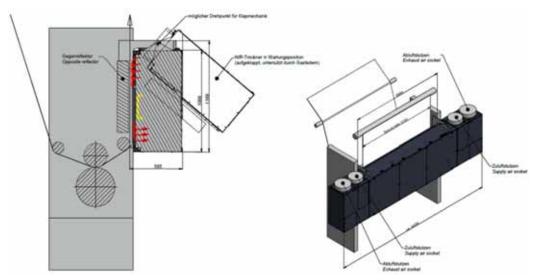
Dryer energy requirements ¹⁾	Hot air (todays Standard)	adphosNIR - Best case	Technology Worst case
Electrical:	2 -3 kWh/1,000 m ²	8 kWh/1,000 m ²	12.5 kWh/1,000 m ²
Gas supplied:	22 – 44 kWh/ 1,000 m² ²⁾		
Total costs at energy ratio 5: energy ratio 4: energy ratio 3:	10 + 22 = 32/ 15 + 44 = 59 8 + 22 = 30/ 12 + 44 = 56 6 + 22 = 28/ 9 + 44 = 53	40 32 24	62.5 50 37.5

- 1) 7.5 g/m² water based ink coverage, full width 2,250 mm.
- ²⁾ Energy consumption for hot air dryer remains constant even for reduced width (so proportional higher energy consumption, according to width/reduction) adphosNIR® dryer requirements remain constant (due to power adaptation to width adjustment). In addition, hot air dryer presses up to **10,000 t/a CO₂!**

Application ExampleWater based Inks on Paper (1)

adpho⁵

Substrates: Different paper qualities (e.g. decor relevant)


Speed: Up to 300 m/min

Width: Up to 2,250 mm

Inks: Water based inks (up to 0 gsm)

4 print station


Application ExampleWater based Inks on Paper (2)

Application ExampleWater based Inks on Film (1)

Substrates: PP, PVC, Acrylics, ...

Speed: Up to 250 m/min

Width: Up to 2,250 mm

Tinte: Water based inks (up to 10 gsm)


5 print stations

Application ExampleWater based Inks on Film (2)

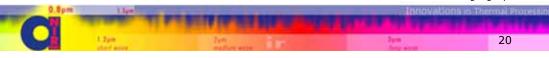
Application ExampleWater based Inks on Film (3)

Application ExampleWater based Inks on Film (4)

Conclusions

- Germany, EU and worldwide "banning/taxation" for CO₂-emissions will come.
- Todays driers (mostly natural gas) in gravure printing business will be effected strongly, based on decided penalties
 e.g. up to 40 €/h in Germany (≙ 1,000 m²/min and 25 kg/1,000 m²) or ≙ 0.62 €/1,000 m².
- Todays available advanced NIR-drying technology generates no CO₂emissions as fully electro-thermal system technology and enhances print
 quality and productivity.
- Can be installed as replacement/upgrade in existing presses as well as for greenfield installations (new).

adpho⁵



90 minutes ride: gas consumption 0.5 t CO₂ emissions

Equivalent: Decoration print production of $25,000 \text{ m}^2 - 40,000 \text{ m}^2$ with todays gas burners or "O"-CO₂-emissions with advanced NIR (but $\geq 250,000 \text{ m}^2$ up to $500,000 \text{ m}^2$).

Source: google pictures

Thank you!

Drying at the speed of light!

Source movie: ww.youtube.com